L3-001 凑零钱 (30分)

L3-001 凑零钱 (30分)

韩梅梅喜欢满宇宙到处逛街。现在她逛到了一家火星店里,发现这家店有个特别的规矩:你可以用任何星球的硬币付钱,但是绝不找零,当然也不能欠债。韩梅梅手边有 10​4​​ 枚来自各个星球的硬币,需要请你帮她盘算一下,是否可能精确凑出要付的款额。

输入格式:

输入第一行给出两个正整数:N(≤10​4​​)是硬币的总个数,M(≤10​2​​)是韩梅梅要付的款额。第二行给出 N 枚硬币的正整数面值。数字间以空格分隔。

输出格式:

在一行中输出硬币的面值 V​1​​≤V​2​​≤⋯≤V​k​​,满足条件 V​1​​+V​2​​+...+V​k​​=M。数字间以 1 个空格分隔,行首尾不得有多余空格。若解不唯一,则输出最小序列。若无解,则输出 No Solution

注:我们说序列{ A[1],A[2],⋯ }比{ B[1],B[2],⋯ }“小”,是指存在 k≥1 使得 A[i]=B[i] 对所有 i<k 成立,并且 A[k]<B[k]。

输入样例 1:

8 9
5 9 8 7 2 3 4 1

输出样例 1:

1 3 5

输入样例 2:

4 8
7 2 4 3

输出样例 2:

No Solution

思路: 动态规划 : 0、1背包, 要输出最优解。 

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int  dp[10010];
int  w[10010];
bool choice[10010][10010];
int  cmp1(int a, int b){
     return a > b;
}
int  main() {
 int n, m;
 scanf("%d%d", &n, &m);
 for( int i = 1; i <= n; i++)
      scanf("%d", &w[i]);
 sort( w + 1, w + n + 1, cmp1);
 for( int i = 1; i <= n; i++) {
      for( int j = m; j >= w[i]; j--) {
           if( dp[j] <= dp[j-w[i]] + w[i] ) {
               choice[i][j] = true;
               dp[j] = dp[j-w[i]] + w[i];
            }
      }
 }
 if(  dp[m] != m ) 
      printf("No Solution");
 else {
  vector<int> arr;
  int v = m, index = n;
  while(v > 0) {
    if( choice[index][v] == true) {
        arr.push_back(w[index]);
        v -= w[index];
    }
    index--;
 }  
 for( int i = 0; i < arr.size(); i++) {
      if(i != 0) printf(" ");
      printf("%d", arr[i]);
 } 
}
 return 0;
}

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师:白松林 返回首页