L3-001 凑零钱 (30分)
韩梅梅喜欢满宇宙到处逛街。现在她逛到了一家火星店里,发现这家店有个特别的规矩:你可以用任何星球的硬币付钱,但是绝不找零,当然也不能欠债。韩梅梅手边有 104 枚来自各个星球的硬币,需要请你帮她盘算一下,是否可能精确凑出要付的款额。
输入格式:
输入第一行给出两个正整数:N(≤104)是硬币的总个数,M(≤102)是韩梅梅要付的款额。第二行给出 N 枚硬币的正整数面值。数字间以空格分隔。
输出格式:
在一行中输出硬币的面值 V1≤V2≤⋯≤Vk,满足条件 V1+V2+...+Vk=M。数字间以 1 个空格分隔,行首尾不得有多余空格。若解不唯一,则输出最小序列。若无解,则输出 No Solution
。
注:我们说序列{ A[1],A[2],⋯ }比{ B[1],B[2],⋯ }“小”,是指存在 k≥1 使得 A[i]=B[i] 对所有 i<k 成立,并且 A[k]<B[k]。
输入样例 1:
8 9
5 9 8 7 2 3 4 1
输出样例 1:
1 3 5
输入样例 2:
4 8
7 2 4 3
输出样例 2:
No Solution
思路: 动态规划 : 0、1背包, 要输出最优解。
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int dp[10010];
int w[10010];
bool choice[10010][10010];
int cmp1(int a, int b){
return a > b;
}
int main() {
int n, m;
scanf("%d%d", &n, &m);
for( int i = 1; i <= n; i++)
scanf("%d", &w[i]);
sort( w + 1, w + n + 1, cmp1);
for( int i = 1; i <= n; i++) {
for( int j = m; j >= w[i]; j--) {
if( dp[j] <= dp[j-w[i]] + w[i] ) {
choice[i][j] = true;
dp[j] = dp[j-w[i]] + w[i];
}
}
}
if( dp[m] != m )
printf("No Solution");
else {
vector<int> arr;
int v = m, index = n;
while(v > 0) {
if( choice[index][v] == true) {
arr.push_back(w[index]);
v -= w[index];
}
index--;
}
for( int i = 0; i < arr.size(); i++) {
if(i != 0) printf(" ");
printf("%d", arr[i]);
}
}
return 0;
}