L3-002 特殊堆栈 (30分)

L3-002 特殊堆栈 (30分)

堆栈是一种经典的后进先出的线性结构,相关的操作主要有“入栈”(在堆栈顶插入一个元素)和“出栈”(将栈顶元素返回并从堆栈中删除)。本题要求你实现另一个附加的操作:“取中值”——即返回所有堆栈中元素键值的中值。给定 N 个元素,如果 N 是偶数,则中值定义为第 N/2 小元;若是奇数,则为第 (N+1)/2 小元。

输入格式:

输入的第一行是正整数 N(≤10​5​​)。随后 N 行,每行给出一句指令,为以下 3 种之一:

Push key
Pop
PeekMedian

其中 key 是不超过 10​5​​ 的正整数;Push 表示“入栈”;Pop 表示“出栈”;PeekMedian 表示“取中值”。

输出格式:

对每个 Push 操作,将 key 插入堆栈,无需输出;对每个 Pop 或 PeekMedian 操作,在一行中输出相应的返回值。若操作非法,则对应输出 Invalid

输入样例:

17
Pop
PeekMedian
Push 3
PeekMedian
Push 2
PeekMedian
Push 1
PeekMedian
Pop
Pop
Push 5
Push 4
PeekMedian
Pop
Pop
Pop
Pop

输出样例:

Invalid
Invalid
3
2
2
1
2
4
4
5
3
Invalid

 思路: 树状数组https://blog.csdn.net/S_999999/article/details/99062651

 

#include<iostream>
#include<stack>
using namespace std;
const int maxn = 100009;
int   c[maxn];
stack<int> s;
int lowbit( int x ){
	return x & (-x);
}
void update( int x ,int val){
	for( int i=x;i<=maxn;i+=lowbit(i) )
	     c[i] +=val;
}
int getsum( int x ){
	int sum = 0;
	for( int i=x;i>=1;i-=lowbit(i))
	     sum +=c[i];
	return sum;     
}
int PeekMedian( ){
	int mid ,left = 1 , right = maxn , k = ( s.size() + 1 )/2;
	while( left < right ){
		 mid = ( left + right )/2;
		 if( getsum(mid) >= k ){
		 	 right = mid;
		 }
		 else left = mid+1; 
	}
	return left;
}
int main(void){
	int n,val;
	//std::ios::sync_with_stdio(false);
	scanf("%d",&n);//cin>>n;
	char str[10]; 
	for( int i=1;i<=n;i++){
		 scanf("%s",str);//cin>>str;
		  if( str[1] == 'u'){
		 	   scanf("%d",&val);//cin>>val;
			   s.push( val);
			   update( val ,1);
		 }
	    else if( str[1] == 'o'){
		 	  if( s.empty() )
		 	    printf("Invalid\n");//cout<<"Invalid"<<endl;
		 	  else {
			    printf("%d\n",s.top()); //cout<<s.top()<<endl;
			      update(s.top() ,-1);
				  s.pop(); 
			  }
		 }
		 else if( str[1] =='e'){
		 	   if( s.empty() )
		 	    printf("Invalid\n"); //cout<<"Invalid"<<endl;
		 	   else {
			    printf("%d\n",PeekMedian());//cout<<PeekMedian()<<endl;
			   }
		 }
	}  
	return 0;
}

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师:白松林 返回首页