L3-021 神坛 (30分)

L3-021 神坛 (30分)

在古老的迈瑞城,巍然屹立着 n 块神石。长老们商议,选取 3 块神石围成一个神坛。因为神坛的能量强度与它的面积成反比,因此神坛的面积越小越好。特殊地,如果有两块神石坐标相同,或者三块神石共线,神坛的面积为 0.000

长老们发现这个问题没有那么简单,于是委托你编程解决这个难题。

输入格式:

输入在第一行给出一个正整数 n(3 ≤ n ≤ 5000)。随后 n 行,每行有两个整数,分别表示神石的横坐标、纵坐标(−10​9​​≤ 横坐标、纵坐标 <10​9​​)。

输出格式:

在一行中输出神坛的最小面积,四舍五入保留 3 位小数。

输入样例:

8
3 4
2 4
1 1
4 1
0 3
3 0
1 3
4 2

输出样例:

0.500

样例解释

输出的数值等于图中红色或紫色框线的三角形的面积。

altar.JPG

 

思路:    三角形的面积通过 向量的叉积来求,

               枚举每个点, 对每个点进行极角排序: 先按象限排序,再按叉积排序。

               相邻两个点构成当前情况下的最小三角形面积  。

 

#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
struct  node{
	    ll x,y;
	    int rel;
}a[5010],b[5010];
int n;
bool cmp(node x,node y){ //极角排序   
	 if( x.rel != y.rel)  
	     return x.rel < y.rel;
	 return x.x*y.y-x.y*y.x<0;
}
int judge(node x) { //返回象限 
	if(x.x > 0 && x.y > 0) return 1;
	if(x.x > 0 && x.y < 0) return 2;
	if(x.x < 0 && x.y < 0) return 3;
	if(x.x < 0 && x.y > 0) return 4;
}
int main(){
	scanf("%d",&n);
	for( int i=1;i<=n;i++) 
	     scanf("%lld%lld",&a[i].x,&a[i].y);
	double ans=-1;
	int cnt;
	for(int i=1;i<=n;i++){
		cnt=1;
		for(int j=1;j<=n;j++){
			if( i==j )
			    continue;
			b[cnt].x   = a[j].x-a[i].x;
			b[cnt].y   = a[j].y-a[i].y;
			b[cnt].rel = judge(b[cnt]);
			cnt++;
		}
		sort(b+1,b+n,cmp);
		for(int j=1;j<n-1;j++){
			if( ans==-1||fabs(b[j+1].x*b[j].y-b[j+1].y*b[j].x)*0.5<ans )
				ans=fabs(b[j+1].x*b[j].y-b[j+1].y*b[j].x)*0.5;
		}
	}
	printf("%.3f\n",ans);
	return 0;
}

 

 

 

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 程序猿惹谁了 设计师:白松林 返回首页